Fits a Poisson and a negative binomial regression model, returning the model with the lower Akaike information criterion¹.
Arguments
- formula
Formula for the Poisson model, as for the
glm()
function.- data
Optional data frame containing model variables.
Details
Wrapper function for stats::glm()
and MASS:glm.nb()
.
References
Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), pp. 716–723.
Examples
library(MASS)
data <- MASS::epil
fit <- glm.count(y ~ trt, data = data)
print(class(fit))
#> [1] "negbin" "glm" "lm"
print(AS.format(fit, name = c("(Intercept)", "Treatment")))
#> [,1] [,2] [,3]
#> [1,] "" "IRR (95%CI)" "p"
#> [2,] "(Intercept)" "8.58 (6.99 to 10.53)" "< 0.001"
#> [3,] "Treatment" "0.93 (0.70 to 1.23)" "0.60"